Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. dent. j ; 25(4): 282-288, 2014. graf
Article in English | LILACS | ID: lil-722619

ABSTRACT

The aim of this study was to evaluate the physicochemical characteristics of 3 mineralized bovine inorganic biomaterials and correlate them with the dissolution rate. Bio-Oss(r), GenoxInorgânico(r), and Bonefill(r) were examined using field emission gun scanning electron microscopy (FEG-SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), specific surface area (BET), calcium/phosphorous molar ratio and a dissolution assay. Bio-Oss(r) showed a micro- and nanoporous structure consisting of 15-nm hydroxyapatite (HA) crystallites; Genox(r), a microporous structure composed of 39-nm HA crystallites; and Bonefill(r), micro- and nanoporous structure of indeterminable crystallite size. FTIR analysis showed that Bio-Oss(r) and Genox(r) were composed of calcium phosphate. The absorption bands of phosphate were poorly defined in Bonefill(r). By XRD, Bio-Oss(r) was shown to contain peaks related to the carbonated HA, whereas Genox(r) only contained peaks corresponding to HA. The broad bands in Bonefill(r) indicated low crystallinity. Bio-Oss(r) showed a greater surface area and calcium release rate than that of Genox(r). Although all biomaterials were of bovine origin, the different manufacturing processes result in materials with different physicochemical properties and may influence the biological and clinical response.


O objetivo deste estudo foi avaliar as características físico-químicas de 3 biomateriais bovinos inorgânicos mineralizados e correlacioná-los com a taxa de dissolução. Bio-Oss(r), Genox Inorgânico(r) e Bonefill(r) foram caracterizados por microscopia eletrônica de varredura com fonte de emissão por efeito de campo (MEV-FEG), espectroscopia de infravermelho com transformada de Fourier (FTIR), difração de raios-X (DRX), área superficial específica (BET), razão molar cálcio/fósforo e análise da dissolução. Bio-Oss(r) mostrou uma estrutura micro e nanoporosa consistindo de cristalitos de hidroxiapatita (HA) de 15 nm; Genox(r), uma estrutura microporosa composta de cristalitos de HA de 39 nm e Bonefill(r), estrutura micro e nanoporosa com tamanho indeterminável de cristalito. Análises de FTIR mostraram que Bio-Oss(r) e Genox(r) eram compostos por fosfato de cálcio. As bandas de absorção de fosfato encontraram-se pouco definidas no Bonefill(r). Por DRX, Bio-Oss(r) mostrou picos relacionados à HA carbonatada, enquanto Genox(r) somente apresentou picos correspondentes à HA; as bandas alargadas no Bonefill(r) indicaram baixa cristalinidade. Bio-Oss(r) apresentou maior área de superfície e taxa de liberação de cálcio quando comparado ao Genox(r). Embora todos os biomateriais fossem de origem bovina, os diferentes processos de manufatura resultam em materiais com diferentes propriedades físico-químicas e podem influenciar a resposta biológica e clínica.


Subject(s)
Animals , Cattle , Bone Transplantation , Crystallography, X-Ray , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared
2.
J. appl. oral sci ; 21(1): 37-42, 2013. ilus, graf
Article in English | LILACS, BBO | ID: lil-684993

ABSTRACT

Objective: The aim of this study was to produce dense granules of tricalcium phosphate (β-TCP) and magnesium (Mg) substituted β-TCP, also known as β-TCMP (Mg/Ca=0.15 mol), in order to evaluate the impact of Mg incorporation on the physicochemical parameters and in vitro biocompatibility of this novel material. Material and Methods: The materials were characterized using X-ray diffraction (XRD), infrared spectroscopy (FTIR), electron microscopy and inductively coupled plasma (ICP). Biocompatibility was assayed according to ISO 10993-12:2007 and 7405:2008, by two different tests of cell survival and integrity (XTT and CVDE). Results: The XRD profile presented the main peaks of β-TCP (JCPDS 090169) and β-TCMP (JCPDS 130404). The characteristic absorption bands of TCP were also identified by FTIR. The ICP results of β-TCMP granules extract showed a precipitation of calcium and release of Mg into the culture medium. Regarding the cytotoxicity assays, β-TCMP dense granules did not significantly affect the mitochondrial activity and relative cell density in relation to β-TCP dense granules, despite the release of Mg from granules into the cell culture medium. Conclusion: β-TCMP granules were successfully produced and were able to release Mg into media without cytotoxicity, indicating the suitability of this promising material for further biological studies on its adequacy for bone therapy.


Subject(s)
Biocompatible Materials/toxicity , Calcium Phosphates/toxicity , Magnesium/toxicity , Analysis of Variance , Biocompatible Materials/pharmacokinetics , Bone Substitutes/pharmacokinetics , Bone Substitutes/toxicity , Calcium Phosphates/pharmacokinetics , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured/drug effects , Materials Testing , Microscopy, Electron, Scanning , Magnesium/pharmacokinetics , Osteoblasts/drug effects , Spectrum Analysis , Time Factors , Toxicity Tests , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL